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The wave functions and energies of a number of diatomic molecules have been determined for
different nuclear separations by both the method of energy variation and the method of moments. The
results obtained by the two methods are compared and indicate definite advantages of the method of
moments over the method of energy variation.

Fiir eine Reihe zweiatomiger Molekiile werden fiir verschiedene Kernabstinde die Wellenfunk-
tionen und Energien nach der Methode der Energievariation und nach der neueren Momenten-
methode bestimmt. Der Vergleich der Ergebnisse zeigt, dafl die Momentenmethode erhebliche Vor-
teile besitzt gegentiber der Giblichen Methode der Energievariation.

Les fonctions d’onde et les énergies de plusicurs molécules diatomiques ont été déterminées a
différentes distances internucléaires par la méthode de variation de I'énergie et par la méthode des
moments. Les résultats comparés des deux méthodes indiquent de nets avantages de la méthode des
moments sur la méthode de variation de I'énergie.

1. Introduction

Some general problems concerning the use of the method moments for the
calculation of molecular properties have been discussed in the first paper of this
series'. The present paper gives the results of numerical calculations on diatomic
molecules. The main aim of these calculations has been to compare the method
of energy variation and the method of moments. The results support the con-
clusions of I concerning the advantages of the method of moments.

The notation of I will be used throughout the paper without further reference.

2. The Method

The calculations have been carried out on ground-state singlet systems in a
one-determinant approximation. The method is a straightforward generalization
of the Hartree-Fock-Roothaan method and consequently we shall only summarize
the basic formulas without describing the details of their derivation. Qur con-
siderations will be limited to systems in the ground state.

Let 2N denote the number of electrons of the system, and let p;(r) and g,(r)
(i=1,2,...,n) be two sets of basis functions depending on the position vector

! The first paper of this series [ 1] will be referred to in the following as I.
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r of an electron. Two sets of one-electron orbitals

si(r) = Z pi(r) o, ¢y

t;(r) = _Zl q;(r) Bji 2

are constructed from the basic sets and these are multiplied by the usual spin
functions a(c) and b(c) to form the one electron spin orbitals u;(x) and v;(x) 2.

u(x)=si(r)alo) ;  uy4i(x)=s;(r) b(o) ; ©)
vi(x)=1t(r)alo) ;  vyii(x)=1t,(r) b(o) ;
3 @
x={r,0}.

The variational wave function ¢,(x, @) and the 0’th weight function wy(x, f)
are written in the form

0o, ) =[2N)11" 2 Det(u(x)) Gj=1,2,...,2N), )
wo (%, B)=[R2N)11"2v,(x1) v2(x,)... 02 5(X2 ) - ©)

It will be assumed that the one-electron spin-orbitals are orthonormalized accord-
ing to
fdref(r) si(r)=0;;. (7

In order to write down the energy expression and the equations for the
determination of the variational parameters we need the following integrals and
auxiliary quantities:

Si;=fdrgf(r) py(r) (overlap integrals), (8)
T,j= —5fdrq}(r) Ap;(r) (kinetic energy integrals), 9
= fdrg¥(r) 7 (r) pi(r) (potential energy integrals), (10)

Ci;=Jdrfdr'qf(r) gF(r)——-p(r) p;{r)  (two electron integrals). (11)

r— |

Here A denotes the Laplacian operator and ¥7(r) the potential due to the nuclear
charges and any external forces.

N
N=2Y w.p (density matrix), (12)
i=1
W, = Z Z Cixi;— 3Cix;)  (electron interaction energy integrals).  (13)
i=1j=1

? In order to avoid confusion with the variational parameters «; and §; we write a(c) and b(o)
for the wave function describing “upward” and “downward” spin, respectively. o denotes the spin
variable.
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The energy expression can now be written as
=% Y I(Tu+Va+ W) (14)
k=11=1

The equations for the determination of the variational parameters can be derived
from the requirements

08/0p%=0 (15)

subject to the constraints (7). In the usual way we obtain the eigenvalue equation
written in matrix notation as

(T+V+W)a=SaE (16)

where E denotes the matrix of the Lagrangian multipliers of the constraints (7).
Finally the constraints (7) give the matrix equation

prSa=1I (17)

where I denotes the diagonal unit matrix.

3. The Results

The calculations have been carried out according to the following scheme:

For every molecule:

(a) A “starting basis set” o,(r) (i=1, 2, ..., n) has been chosen. The o,(r)’s have
been built up of Slater functions with fixed orbital exponents and fixed effective
principal quantum numbers (chosen in most cases according to the Slater rules).

(b) Every function o,(r) has been expanded into a finite number of 1s Boys
functions * (“lobe orbital approximation”) in different ways giving the functions

oV(r), oHm),.... (18)

The details of the expansion are described in the tables and in the Appendix.
The sets o;(r) are given in such an order that if they are chosen as basis sets in
conventional Hartree-Fock-Roothaan calculations based on the method of
energy variation then the sets with higher superscripts give better approximations
to E,. (In practice this means that the sets with higher superscripts are expanded
into more Boys functions.)

(c) The basis sets g;(r) and p;(r) have been chosen in the form
q:(r) = o{(r). (19)
p()=0"r (=12,..,n; k<. (20)
3 Functions of the form
exp(—ar) 'Y, (9, @)
will be referred to as Slater functions and functions of the form

exp(—ar?) 1" 1Y, (9, @)
as Boys functions.
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Table 1
i 0;(r) Number of expanding Boys
functions
Functional form z-coordinate
of the center oM (r) oi3(r) o3 (r)
H, molecule: Basis sets
1 N x exp(—1.007r) +R/2 1 2 4
2 N xexp(—1.007) —R/2 1 2 4
3 N x exp(—2.007) +R/2 1 2 4
4 N xexp(—2.007) —R/2 1 2 4
5 N x exp(—1.007) 0 1 1 1
Li, molecule: Basis sets
1 N x exp(—2.707) +R/2 1 2 4
2 N xexp(—2.707) —R/2 1 2 4
3 N xrxexp(~0.65r) +R/2 2 4 5
4 N xr x exp(—0.65r) —R/2 2 4 5
5 N xexp(—1.007) 0 1 1 1
LiH molecule: Basis sets
1 N xexp(—2.707) 0 1 2 4
2 N x r x exp(—0.65r) 0 2 4 5
3 N xexp(—1.007) +R 1 2 4
4 N xexp(—1.007) +R/2 1 1 1
Be, molecule: Basis sets
1 N x exp(—3.70r) +R/2 1 2 4
2 N xexp(—3.70r) —R/2 1 2 4
3 N x r x exp(—0.98r) +R/2 2 4 5
4 N xrxexp(—098r) —R/2 2 4 5
5 N x exp(—1.00r) 0 1 1 1
HF molecule: Basis sets
i N xexp(—8.707r) 0 1 4
2 N xrxexp(—2.60r) 0 2 4
3 N xx xexp(—2.60r) 0 2 4
4 N xyxexp(—2.60r) 0 2 4
5 N x z xexp(—2.60r) 0 2 4
6 N x exp(—1.007) +R 1 4
7 N x exp(—1.007) +R/2 1 1
Table 2. The choice of the basis functions p;(r) and q(r) in the different calculations
Molecule 1st approximation 2nd approximation
A B A B C
H,, Li,, LiH, Be, k=1 k=1,1=2 k=1 k=1,1=3 =3
HF =1 k=1,1=2
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Table 3. The equilibrium nuclear separations
Molécule 1st approximation 2nd approximation
RA RB RC RA RB RC

H, 1.34 1.36 1.38 1.34 1.38 1.40
Li, <2 4.88 5.12 <2 5.16 5.32
LiH 2.12 2.76 2.86 212 2.76 2.86
Be, 7.25 9.05 9.10 7.25 9.10 9.10
HF 1.78 1.72 1.70

In the case k=1 the approximation is equivalent to determining the variational
wave function by the method of energy variation, in the case k <[ the approxima-
tion is based on the method of moments.

(d) The calculations with the basis sets (19) and (20) have been carried out

for every nuclear separation in the following three different approximations:

Approximation A:

q:(r) = pi(r) = 0{"(r)

(“lower method-of-energy-variation approximation™).

Approximation B:

q;(r)=0{"(r),

pi(r)=o0{"(r)

(“method-of-moments approximation”).

Approximation C:

q:(r) =pi(r) =0’ (1)

(*higher method-of-energy-variation approximation”).

(e) After having determined the wave functions @g(x, ), 3(x, «) and @§(x, «)
belonging to the approximations A, B, and C the following quantities have been

calculated.

The total ionization energies E ,(R), Eg(R) and E-(R).

The overlap integrals

S4(R)= <5195 ,
S4c(R) =<95105> ,
Spc(R)= <<p€!<p8> .

The equilibrium nuclear separations R, R and R..

Here R denotes the nuclear separation.

(1)

(22)
(23)

(24)

The results obtained in this way are presented in the Tables 1-3 and the
Figs.1-5. All quantities are given in atomic unite. N symbolizes the normalization

coefficient.
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Be, Molecule
1st Approximation 2nd Approximation
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4. Discussion

It can be seen from the results presented in Section 3 that the approximations B
give a similar accuracy as the corresponding approximations C and that this
accuracy is in most cases considerably higher than that obtained from the corre-
spondingapproximation 4. We have thus to compare the computer times connected
with the different approximations.

The main difference in the computer times result from the differences between
the computer times needed for the calculation of the electron interaction integrals®.

Although the estimates of computer time required for the calculation of the
electron interaction integrals are more or less rough estimates, they are yet suf-
ficiently reliable to draw the necessary conclusions.

If the total number of 1s Boys functions comprising the basis wave and basis
weight functions (the p;(r)’s and g,(r)’s) is denoted by m and n, respectively, the
computer time for the calculation of the clectron interaction integrals is roughly
proportional to the product m*n?. (In the case of the method of energy variation
m=n.) The proportionality factor is, however, different for the method of moments
and the method of energy variation. Namely in the case of the method of moments

# It may be mentionned that except for the very lowest approximations an overwhelming part of
the computer time has been spent in calculating the electron interaction integrals.

20 Theoret. chim. Acta (Berl) Vol. 15
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Table 4. The approximate computer times required for the calculation of the electron interaction
integrals. (In every calculation the time required for the calculation of the integrals in approximation A
has been taken as unit)

1st approximation 2nd approximation

A B C A B C
H, 1 11 10 1 38 134
Li, 1 11 12 1 25 43
LiH 1 11 10 1 26 62
Be, 1 11 12 1 25 43
HF 1 12 14

the only symmetry property of the integrals that can be utilized (apart from
possible sterical symmetries of the molecule which have not been taken into
account) is

Ciklj = Ckijl (25)

while in the case of the method of energy variation the additional symmetry
properties

Ciri;= Ciuni» (26)
Ciklj = Cilkj (27)

can also be utilized. The computer times can thus roughly be estimated as
const - n*/8 (28)

in the case of the method of energy variation and as
const - m2n?/2 (29)

in the case of the method of moments. Because of the more complicated administra-
tion the constant factor is about 10-20 percent higher in the case of the method of
energy variation than in the method of moments.

The results presented in the Table 4 indicate that a given degree of accuracy
has been obtained by the method of moments always in practically equal or less
time than by the method of energy variation.

Appendix

The Expansion of the Slater Functions

Fora given Slater function the constants of the expansions have been determined
in such a way that the integral

[dr[S()— 3 csexp(— bilr— )27
‘ i=1

should be minimum (S(r) denotes the Slater function with orbital exponent 1,
centered in the origin of the coordinate system). This procedure is equivalent to
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Table 5

ist 2nd 3rd 4th 5th Overlap
1s Slater function:
c: 0.33833
b: 0.37031 0.96689
c: 0.16596 0.28040
b: 0.19119 1.40070 0.99712
c: 0.07418 021032 0.19904
b: 0.12054 0.48204 3.14200 0.99978
c: 0.01498 0.10895 0.18597 0.17733
b: 0.06747 0.19049 0.65178 3.65050 0.99995
2s Slater function:
c: 0.14507 —0.03560
b: 0.11233 0.55026 0.99520
c: 0.05872 0.09694 —0.08836
b: 0.06900 0.19560 1.70000 0.99985
c: 0.05227 0.12979 —0.04485 —0.09460
b: 0.06580 019747 0.34959 3.65000 0.99994
c: 0.05662 0.11055 -0.00796 —0.02303 —0.09142
b: 0.06810 0.19782 0.34973 0.49990 3.50000 0.99991
3s Slater function:
c: 0.08471 —0.08795
b: 0.05601 0.95001 0.99922
c: 0.08024 0.03353 —0.10263
b: 0.05543 0.19991 0.49998 0.99976
c: 0.07603 0.07231 —0.11952 —0.02985
b: 0.05412 0.19992 0.34996 2.45000 0.99987
4s Slater function:
c: 0.10189 —0.09877
b: 0.05000 0.16685 099714
c: 0.11739 —0.07492 —0.04497
b: 0.05000 0.10000 0.34690 0.99873
c: 0.11782 —-0.07691 0.02852 —0.07018
b: 0.05000 0.10000 0.67610 0.43860 0.99877
2p, Slater function:
c: 0.76714
b: 0.16459
z: 0.29804 0.97481
c: 0.49868 0.29387
b: 0.11410 0.50850
z: 0.30010 0.43790 0.99363
3p, Slater function:
c: 0.65692
b: 0.09199
z: 0.29998 0.99823
c: 0.40817 0.08048
b: 0.06552 0.19805
z: 0.30000 1.35000 0.99905
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maximizing the overlap between the Slater function and its expansion, the
expansion being subject to the same normality constraint as the Slater function.
Here r; denotes the center of the i-th Boys function. r ™ is a weight factor. In case
of s Slater functions k has been chosen 1 in order to improve the expansion in the
regions important for the energy. The expansion of p Slater functions occurred
with k=0.

All the constants c;, b; and r; have been optimized.

The constants obtained in this way are tabulated (Table 5). Every table contains
the expansions of a Slater function, that is the coefficients (c), the exponents (b)
and in case of p, Slater functions the z coordinate of the center r; (the x and y
coordinates are 0). For every Slater function several expansions are presented,
differing from each other in the number of Boys functions. The overlap between
the Slater function and its expansions is also given.

Some papers dealing with similar problems are listed in the reference.
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