
Theoret. chim. Acta (Berl.) 15,283--292 (1969) 

Determination of Molecular Properties by the Method 
of Moments. II 

M. G. HEGYI, M. MEZEI, and  T. SZONDY 

Hungarian United Chemical Works 
and Research Group for Theoretical Physics of the Hungarian Academy of Sciences, Budapest 

Received June 2, 1969 

The wave functions and energies of a number of diatomic molecules have been determined for 
different nuclear separations by both the method of energy variation and the method of moments. The 
results obtained by the two methods are compared and indicate definite advantages of the method of 
moments over the method of energy variation. 

Ftir eine Reihe zweiatomiger Molekfile werden fiir verschiedene Kernabst~inde die Wellenfunk- 
tionen und Energien nach der Methode der Energievariation und nach der neueren Momenten- 
methode bestimmt. Der Vergleich der Ergebnisse zeigt, dab die Momentenmethode erhebliche Vor- 
teile besitzt gegentiber der tiblichen Methode der Energievariation. 

Les fonctions d'onde et les energies de plusieurs mol6cules diatomiques ont +t6 d&ermin6es 
diff6rentes distances internucI6aires par la m6thode de variation de l'6nergie et par la m6thode des 
moments. Les r6sultats compar6s des deux m6thodes indiquent de nets avantages de la m~thode des 
moments sur la m&hode de variation de l'6nergie. 

1. Introduction 

Some general  problems concern ing  the use of the method moments  for the 
calculat ion of molecular  propert ies have been discussed in the first paper of this 
series 1. The present  paper gives the results of numerica l  calculat ions on dia tomic 
molecules. The main  aim of these calculat ions has been to compare  the method  
of energy var ia t ion  and  the method  of moments .  The results support  the con- 
clusions of I concern ing  the advantages  of the method  of moments .  

The no ta t ion  of I will be used th roughout  the paper  without  further reference. 

2. The Method 

The calculat ions have been carried out  on ground-s ta te  singlet systems in a 
one-de te rminan t  approximat ion .  The method  is a straightforward general izat ion 
of the Ha r t r ee -Fock -Roo thaan  method  and  consequent ly  we shall only summarize  
the basic formulas wi thout  describing the details of their derivation. Our  con- 
siderations will be l imited to systems in the g round  state. 

Let 2N denote  the n u m b e r  of electrons of the system, and let pi(r) and  qi(r) 
( i =  1, 2, ..., n) be two sets of basis funct ions depending  on the posi t ion vector 

1 The fi.rst paper of this series [1] will be referred to in the following as I. 
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r of an electron. Two sets of one-electron orbitals 

si(r) = ~ pj(r) ~ji, (1) 
j=l 

ti(r) = ~, qj(r) fljl (2) 
j = l  

are constructed from the basic sets and these are multiplied by the usual spin 
functions a(a) and b(a) to form the one electron spin orbitals ui(x ) and vi(x) 2 

ui(x ) = si(r ) a(a) ; UN+i(X ) = si(r) b(a) ; (3) 

vi(x) = ti(r ) a(a) ; VU+i(X ) : ti(r ) b(a) ; 
(4) 

x = {r, ~}. 

The variational wave function ~Oo(X, a) and the O'th weight function Wo(X, fl) 
are written in the form 

~Oo(X, a) = [(2N)!] - 1/2 Det (ui(xj)) (i,j = 1, 2 . . . . .  2N),  (5) 

w o (x, fl) = [(2 N) !] 1/2 v 1 (x 1) v2 (x2) �9 N (X2 N)" (6) 

It will be assumed that the one-electron spin-orbitals are orthonormalized accord- 
ing to 

j" dr  t*(r) sj(r) = 6ij. (7) 

In order to write down the energy expression and the equations for the 
determination of the variational parameters we need the following integrals and 
auxiliary quantities: 

Sij = ~drq*(r) pj(r) (overlap integrals), (8) 

Tij = - �89 drq*(r) Apj(r) (kinetic energy integrals), (9) 

Y/ j  = ~drq*(r) ~/'(r)pj(r) (potential energy integrals), (10) 

1 
C i k l j  = ~dr~dr'q*(r) q* (r') ~ pl(r') pj(r) (two electron integrals). (11) 

Here d denotes the Laplacian operator and W(r) the potential due to the nuclear 
charges and any external forces. 

N 

FZk =2  ~ alifi~i (density matrix), (12) 
i = 1  

Wkl = ~ ~ Fji(Ciklj-- �89 (electron interaction energy integrals). (13) 
i = l j = l  

In order to avoid confusion with the variational parameters ~j~ and fl3i we write a(a) and b(a) 
for the wave function describing "upward" and "downward" spin, respectively, a denotes the spin 
variable. 
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The energy expression can now be written as 

k = l  I = 1  

The equations for the determination of the variational parameters can be derived 
from the requirements 

~e/a~*, = 0 ( i s )  

subject to the constraints (7). In the usual way we obtain the eigenvalue equation 
written in matrix notation as 

(T  + V + W ) ~  = so~g (16) 

where E denotes the matrix of the Lagrangian multipliers of the constraints (7). 
Finally the constraints (7) give the matrix equation 

fl+ S~ = I (17) 

where I denotes the diagonal unit matrix. 

3. The Results 

The calculations have been carried out according to the following scheme: 

For  every molecule: 

(a) A "starting basis set" oi(r) (i = 1, 2, ..., n) has been chosen. The oi(r)'s have 
been built up of Slater functions with fixed orbital exponents and fixed effective 
principal quantum numbers (chosen in most cases according to the Slater rules). 

(b) Every function oi(r) has been expanded into a finite number of ls Boys 
functions 3 ("lobe orbital approximation")  in different ways giving the functions 

opt(r ) ,  o?~(r) . . . . .  (18) 

The details of the expansion are described in the tables and in the Appendix. 
The sets oi(r) are given in such an order that if they are chosen as basis sets in 
conventional Har t ree-Fock-Roothaan calculations based on the method of 
energy variation then the sets with higher superscripts give better approximations 
to E o. (In practice this means that the sets with higher superscripts are expanded 
into more Boys functions.) 

(c) The basis sets qi(r) and pi(r) have been chosen in the form 

qi (r) = o! k) (r). (19) 

pi(r) = o!~ (i = 1, 2 , . . . ,  n ; k ~ 1). (20) 

3 Functions of the form 
exp(- ~r) r "+l Yl,m(O, ~P) 

will be referred to as Slater functions and functions of the form 

exp(- ~r 2) r 2"+1Y~,m(O, qO 
as Boys functions. 
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Table 1 

o~(r) 

Funct ional  form 

N u m b e r  of expanding Boys 
functions 

z-coordinate 
of the center o11)@) o!2)(r) o?~(r) 

H 2 molecule: Basis sets 

1 N x e x p ( -  1.00 r) +R/2 1 2 4 

2 N x exp ( - 1.00 r) - R/2 1 2 4 

3 N x exp ( - 2.00 r) + R/2 1 2 4 

4 N x e x p ( - 2 . 0 0  r) - R / 2  1 2 4 

5 N x e x p ( -  1.00 r) 0 1 1 1 

Li 2 molecule: Basis sets 

1 N x exp ( - 2.70 r) + R/2 1 2 4 

2 N x e x p ( -  2.70 r) - R / 2  1 2 4 

3 N x r x e x p ( - 0 . 6 5 r )  +R/2 2 4 5 

4 N x r x exp ( -0 .65 r )  - R / 2  2 4 5 

5 N x exp( - 1.00 r) 0 1 1 1 

LiH molecule: Basis sets 

1 N x e x p ( - 2 . 7 0  r) 0 1 2 4 

2 N x r x exp ( -0 .65 r )  0 2 4 5 

3 N x e x p ( -  1.00 r) + R  1 2 4 

4 N x exp ( - 1.00 r) + R/2 1 1 1 

Be 2 molecule: Basis sets 

1 N x exp ( - 3.70 r) + R/2 1 2 4 

2 N x e x p ( - 3 . 7 0  r) - R / 2  1 2 4 

3 N x r x e x p ( - 0 . 9 8 r )  +R/2 2 4 5 

4 N x r x c x p ( - 0 . 9 8 r )  - R / 2  2 4 5 

5 N x e x p ( -  1.00 r) 0 1 1 1 

H F  molecule: Basis sets 

1 N x e x p ( - 8 . 7 0  r) 0 1 4 

2 N x r x e x p ( - 2 . 6 0 r )  0 2 4 

3 N x x x e x p ( - 2 . 6 0 r )  0 2 4 

4 N x y x e x p ( - 2 . 6 O r )  0 2 4 

5 N x z x e x p ( - 2 . 6 O r )  0 2 4 

6 N x e x p ( -  1.00 r) + R  1 4 

7 N x exp( - 1.00 r) + R/2 1 1 

Table 2. The choice of  the basis functions pi(r) and qi(r) in the different calculations 

Molecule 1st approximat ion  2nd approximat ion  

A B C A B C 

H2, Li2, LiH, B% k =  1 k =  1, l = 2  l = 2  k =  1 k =  1, l = 3  l = 3  

H F  k = l  k = l , l = 2  l = 2  
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Table 3. The  equilibrium nuclear separations 
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Molecule 1st approximation 2nd approximation 

R A R B R c R A R~ R c 

H2 1.34 1.36 1.38 1.34 1.38 1.40 

Li 2 < 2  4.88 5.12 <2  5.16 5.32 

LiH 2.12 2.76 2.86 2.12 2.76 2.86 

Be 2 7.25 9.05 9.10 7.25 9.10 9.10 

HF 1.78 1.72 1.70 

In the case k = l the approximation is equivalent to determining the variational 
wave function by the method of energy variation, in the case k < 1 the approxima- 
tion is based on the method of moments. 

(d) The calculations with the basis sets (19) and (20) have been carried out 
for every nuclear separation in the following three different approximations: 

Approximation A: 

qi(r) = pi(r) = olk)(r) (21) 

("lower method-of-energy-variation approximation"). 

Approximation B: 

qi(r) = o!k)(r), (22) 

par) = o?(r)  (k < I) (23) 

("method-of-moments approximation"). 

Approximation C: 

qi(r) = pi(r) = O l / ) ( r )  (24) 

("higher method-of-energy-variation approximation"). 

(e) After having determined the wave functions q)0A(X, ~), q)~(X, C0 and pC(x, c0 
belonging to the approximations A, B, and C the following quantities have been 
calculated. 

The total ionization energies E A (R), EB(R ) and Ec(R ). 
The overlap integrals 

SAB(R) = (@A] @~), 

SAc(R) = < q)A [ (pC) , 

S ,c (R)  = (*gt  p c ) .  

The equilibrium nuclear separations RA, R B and R C. 
Here R denotes the nuclear separation. 
The results obtained in this way are presented in the Tables 1-3 and the 

Figs.l-5. All quantities are given in atomic unite. N symbolizes the normalization 
coefficient. 
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4. Discussion 

It can be seen from the results presented in Section 3 that the approximations B 
give a similar accuracy as the corresponding approximations C and that this 
accuracy is in most cases considerably higher than that obtained from the corre- 
sponding approximation A. We have thus to compare the computer times connected 
with the different approximations. 

The main difference in the computer times result from the differences between 
the computer times needed for the calculation of the electron interaction integrals 4. 

Although the estimates of computer time required for the calculation of the 
electron interaction integrals are more or less rough estimates, they are yet suf- 
ficiently reliable to draw the necessary conclusions. 

If the total number of ls Boys functions comprising the basis wave and basis 
weight functions (the pi(r)'s and qi(r)'s) is denoted by m and n, respectively, the 
computer time for the calculation of the electron interaction integrals is roughly 
proportional to the product mZn z. (In the case of the method of energy variation 
m = n.) The proportionality factor is, however, different for the method of moments 
and the method of energy variation. Namely in the case of the method of moments 

4 It may be mentionned that except for the very lowest approximations an overwhelming part of 
the computer time has been spent in calculating the electron interaction integrals. 

20 Theoret. china. Acta (Berl.) VoL lg 
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Table 4. The approximate computer times required for the calculation of the electron interaction 
integrals. (In every calculation the time required for the calculation of the integrals in approximation A 

has been taken as unit) 

1st approximation 2nd approximation 

A B C A B C 

H 2 1 11 10 1 38 134 

Li 2 1 11 12 1 25 43 

LiH 1 11 10 1 26 62 

Be 2 1 11 12 1 25 43 

HF 1 12 14 

the only symmetry property of the integrals that can be utilized (apart from 
possible sterical symmetries of the molecule which have not been taken into 
account) is 

Ci~lj = Cki~ (25) 

while in the case of the method of energy variation the additional symmetry 
properties 

Cikzj = Cjku, (26) 

Ciklj = Cilkj (27) 

can also be utilized. The computer times can thus roughly be estimated as 

const,  n4/8 (28) 

in the case of the method of energy variation and as 

const,  mZn2/2 (29) 

in the case of the method of moments. Because of the more complicated administra- 
tion the constant factor is about 10-20 percent higher in the case of the method of 
energy variation than in the method of moments. 

The results presented in the Table 4 indicate that a given degree of accuracy 
has been obtained by the method of moments always in practically equal or less 
time than by the method of energy variation. 

Appendix 

The Expansion of the Slater Functions 

For a given Slater function the constants of the expansions have been determined 
in such a way that the integral 

I dr[S(r) - ~ ci e x p ( -  bi(r - ri)2)] 2 r -k 
i=1 

should be minimum (S(r) denotes the Slater function with orbital exponent 1, 
centered in the origin of the coordinate system). This procedure is equivalent to 
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Table 5 

1 st 2nd 3rd 4th 5th Overlap 

lS Slaterfunction: 

c: 0.33833 
b: 0.37031 

c: 0.16596 0.28040 
b: 0.19119 1.40070 

c: 0.07418 0.21032 
b: 0.12054 0.48204 

c: 0.01498 0.10895 
b: 0.06747 0,19049 

2s Slaterfunction: 

c: 0.14507 -0.03560 
b: 0.11233 0.55026 

c: 0.05872 0.09694 
b: 0.06900 0.19560 

c: 0.05227 0.12979 
b: 0.06580 0?19747 

c: 0.05662 0.11055 
b: 0.06810 0.19782 

3s Slaterfunction: 

e: 0.08471 -0,08795 
b: 0.05601 0.95001 

c: 0.08024 0,03353 
b: 0.05543 0.19991 

c: 0.07603 0.07231 
b: 0.05412 0.19992 

4s Slaterfunction: 

c: 0.10189 -0.09877 
b: 0.05000 0.16685 

c: 0.11739 -0.07492 
b: 0.05000 0.10000 

c: 0.11782 -0.07691 
b: 0.05000 0.10000 

2p~ Slaterfunction: 

c: 0.76714 
b: 0.16459 
z: 0.29804 

c: 0.49868 0.29387 
b: 0.11410 0.50850 
z: 0,30010 0.43790 

3pz Slaterfunction: 

c: 0.65692 
b: 0.09199 
z: 0.29998 

c: 0.40817 0.08048 
b: 0.06552 0.19805 
z: 0.30000 1.35000 

0.19904 
3.14200 

0.18597 0.17733 
0.65178 3.65050 

--0.08836 
1.70000 

--0.04485 --0.09460 
0.34959 3.65000 

--0.00796 --0.02303 
0.34973 0.49990 

--0.10263 
0.49998 

--0.11952 --0.02985 
0.34996 2.45000 

--0.04497 
0.34690 

0.02852 --0.07018 
0.67610 0.43860 

--0.09142 
3.50000 

0.96689 

0,99712 

0.99978 

0.99995 

0.99520 

0.99985 

0.99994 

0.99991 

0.99922 

0.99976 

0.99987 

0.99714 

0.99873 

0.99877 

0.97481 

0.99363 

0.99823 

0.99905 

20* 
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maximizing the overlap between the Slater function and its expansion, the 
expansion being subject to the same normality constraint as the Slater function. 
Here rl denotes the center of the i-th Boys function, r -k is a weight factor. In case 
of s Slater functions k has been chosen 1 in order to improve the expansion in the 
regions important for the energy. The expansion of p Slater functions occurred 
with k = 0. 

All the constants % bi and r~ have been optimized. 
The constants obtained in this way are tabulated (Table 5). Every table contains 

the expansions of a Slater function, that is the coefficients (c), the exponents (b) 
and in case of Pz Slater functions the z coordinate of the center r~ (the x and y 
coordinates are 0). For  every Slater function several expansions are presented, 
differing from each other in the number of Boys functions. The overlap between 
the Slater function and its expansions is also given. 

Some papers dealing with similar problems are listed in the reference. 
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